
CTN Test Tools

A Guide to Programs for Testing DICOM Functionality

Nilesh Gohel
Stephen M. Moore
Chander Sabharwal

Mallinckrodt Institute of Radiology
Electronic Radiology Laboratory

510 South Kingshighway Boulevard
St. Louis, Missouri 63110

314/362-6965 (Voice)
314/362-6971 (FAX)

Version 2.10.0
August 3, 1998

This document contains documentation on various utili-
ties useful for CTN operation and testing.

Copyright (c) 1995, 1998 RSNA, Washington University
/wuerlb/documentation/dicom/ctn/test_tools.frm

 of per-
 have
), to
hat
on and

muni-
valid
two

UL
s inter-

d-
P/IP.
 nodes
oping

 moni-
ms of
ed to
tor’s port
oni-

ir
onses
/or
ts are
1 Introduction

This manual describes a set of tools (applications) that we have developed for the purpose
forming tests on DICOM systems and for exercising the systems. The applications that we
developed can be used to drive a DICOM communication session (establish an association
examine DICOM (image) information objects, and to listen passively to two other systems t
are communicating. This manual describes the background and purpose of each applicati
describes how each application is to be used.

2 DICOM Network Snooper

2.1 Purpose

A DICOM snooper was developed as a tool to passively listen to DICOM communications
between two systems on a network. Such a tool may be used to investigate a failure in com
cations that has occurred at the DICOM Upper Layer level. This failure may be due to an in
or inappropriate DICOM PDU and or improper handshaking. In a communication between
entities, the DICOM network snooper provides a third party view of the communications by
dumping all DICOM elements and association parameters (request and accept or reject). D
states of the initiator and acceptor are also tracked and reported based on the DICOM PDU
cepted.

2.2 Scope

The DICOM network snooper is limited in that it can only monitor communications on share
media (e.g. Ethernet or FDDI) networks where the DICOM communications are based on TC
The listening node must be located on the network in such a manner that traffic between the
being monitored traverses the listening node’s network interface. The real-time network sno
facility upon which the applications are based is called the SNP facility and was specifically
developed for the Sun Solaris 2.3 (Sun OS 5.3) operating system environment as a tool for
toring TCP/IP communications. This dependence on the Solaris 2.3 OS is a limitation in ter
environments for the running of the applications. Parameters of the communication that ne
be specified are the initiator host name / address, acceptor host name / address, and accep
number. TCP/IP sockets or associations established matching those parameters are then m
tored.

The Snoop programs produce output that is intended to be examined by someone with a fa
amount of DICOM experience. For example, these programs can print commands and resp
generated by two applications, but does not try to interpret the sequence of commands and
responses. The Snoop programs also perform no tests to determine if command or data se
complete or otherwise correct.
1

ayer

s of
f the
P seg-
ader

 track
is also

at
2.3 Usage

Two applications are used for snooping on communications at the TCP or DICOM Upper L
level.

2.3.1 snp_to_files

Thesnp_to_files application is used for snooping at the TCP level in real-time. Two output file
the parsed TCP data streams are created. One file is created for data sent by the initiator o
conversation; the second file stores data sent by the acceptor of the conversation. Each TC
ment, once it has been sequenced and acknowledged, is written to the files along with a he
that contains the segment’s sequence number so that the application reading the files may
the sequence of PDU arrivals between the two files. An end of association dummy header
written to notify the application reading the files of that event.

More specifically the header attached to each segment placed in the data files looks like th
shown in Figure 1.

The application is invoked in the following manner:
snp_to_files device ppa initiator acceptor port buffersize(longs) associations ini->acc_file acc->ini_file

Where

device Network interface device file, e.g. “/dev/le” for Ethernet

ppa Physical Point of Attachment (PPA). To identifiy which network interface to use. Gen-
erally this will be 0 for the only network interface of this type, e.g. 0 for /dev/le0

initiator Host name or IP address of initiator

acceptor Host name of IP addres of acceptor

port TCP port number of acceptor

buffersize Size of buffer (in longs) used by underlying SNP facility to buffer data in asynchronous
I/O operation. Recommended value is 32768

associations Number of TCP or DUL associations to be monitored. Each DUL association takes one
TCP association

ini->acc_file Name of file in which to write TCP data stream in the initiator to acceptor direction

acc->ini_file Name of file in which to write TCP data stream in the acceptor to initiator direction.

type seq len

4 bytes 4 bytes 4 bytes

type = 0 for ini->acc data
=1 for acc->ini data
= 2 for end of assoc.

type = 0 for ini->acc data
=1 for acc->ini data
= 2 for end of assoc.

seq = sequence number of
segment in tracking
of associations

FIGURE 1. Header for TCP Segments Output by snp_to_files Application (Big Endian Format)
2

per-

.
e ter-

appli-

iation

le of a
2.3.2 dcm_snoop

Thedcm_snoop application is used for snooping at the DUL level. The application has two o
ating modes. In the first mode, the snooping is conducted from data files generated by the
snp_to_files program. The second mode is the real-time operation directly from the network
These data are parsed for DICOM PDUs. Output of dcm_snoop is by default delivered to th
minal. The following information is provided for the associations tracked:

1. Notification of the arrival of a DICOM PDU, including its length (unless standard size) and type. If
the type is P-DATA-TF, whether it carries a command or data PresentationData Value (PDV) frag-
ment.

2. Association request parameters.

3. Association response (reject or accept) parameters

4. Dumps of command and data elements once all the PDV fragments for the element have been accu-
mulated. Note that when the data element is of large size, the elements will be held in a file known
as for_dcm_snoopITOA or for_dcm_snoopATOI depending on the direction of the data (from initi-
ator to acceptor [ITOA] or from acceptor to initiator [ATOI]). This file is created in the directory
from which the application is invoked.

5. On arrival of each DICOM PDU, the anticipated association state numbers for the initiator and
acceptor are provided.

6. The end of an association.

The application is invoked in the following manner to use files created by the snp_to_files
cation:

dcm_snoop ini->acc_file acc->ini_file [initiator] [acceptor]

where the names of the initiator and acceptor are optional and are only used to fill in assoc
parameters.

For invoking the application in a real-time mode, use:

dcm_snoop device ppa initiator acceptor port buffersize(longs) assoc

These parameters are explained above in section 2.3.1.

2.4 Overview of Software Architecture

Figure 2 shows the DICOM network snooper software architecture. For contrast, an examp
generic communications application using the DICOM protocol is provided. In this case, the
application uses the DICOM Upper Layer protocol to deliver the commands and data.
3

n of the
plication

_snoop
ication

facility
nsion
snoop)

NP
ility

 (DLPI)

thernet)

 PDU
tream

Dump of DUL
level activity

to stdout

kernel-level
processing

ure
Implementations of
applications that use
the DICOM protocol

Implementation of snp_to_files
application

Implementatio
dcm_snoop ap

Application

DICOM UL

TCP Engine

IP Engine

Network Interface
Device Driver

snp_to_files
application

TCP parse

TCP FSM

TCP PDU
stream

Packet Filter
Modules

Buffer Module

dcm
appl

DUL
exte

(DUL

ini->acc file

ini->acc file

S
fac

STREAMS-based Data Link Provider Interface

Network Interface Device Driver (e.g. dev/le for E

Shared Media Network (e.g. Ethernet)

IP PDU
stream

IP
s

SNP
facility

Async
I/O

Parsed TCP
data files

Parsed
TCP
data

IP PDU
stream

FIGURE 2. Block Diagram of DICOM Network Snooper Software Architect

t uses
l,
dard
ss
rface
t node.

parse
rect IP
are
d by
 con-

O
nts are

ty is
nitor
edg-
(or asso-
e
ay be

 for

 and
er
 in the
ledged

g
h a
much of
 used

ds to be
ts
heck-

ausing

l-
1.
he
the
is
he
The real-time DICOM snooping applications are constructed on top of the SNP facility. This
facility was created specifically for snooping on TCP sockets in a Solaris 2.3 environment. I
the UNIX system communication services known as STREAMS. At the lowest datalink-leve
STREAMS are used to communicate with the network interface using Version 2 of the stan
Data Link Provider Interface (DLPI). The STREAM is attached and bound to a service acce
point (SAP). In our case, the SAP is 2048 which corresponds to IP traffic. By placing the inte
in promiscuous mode, all IP PDUs on the network are intercepted and not just those for tha

A chain of packet filters modules are then used on the STREAM at the kernel level. These
the incoming IP PDUs for only TCP segments that are of interest (are TCP PDUs, have cor
addresses, and a matching TCP port number). Segments from the initiator to the acceptor
intercepted as well as segments in the opposite direction. These segments are then buffere
another STREAMS module at the kernel level. When the buffer is full or a timer expires, the
tents are read by the TCP FSM layer of the software in an interrupt driven asynchronous I/
scheme. The interrupts are serviced by the TCP FSM layer in which each of the TCP segme
reviewed for TCP flags. By monitoring the flags in the TCP segment stream, the SNP facili
able to monitor the states of the TCP socket (or association). The facility is only able to mo
those sockets that are set up while the snooping applications are running. Data or acknowl
ments for these sockets are passed on to the next TCP parse layer only if the TCP socket
ciation) is perceived to be in an ESTABLISHED state. Although only one association may b
monitored at any given time, more than one consecutive association matching the criterion m
monitored using the SNP facility. The SNP facility keeps it’s own set of states which allows
the reporting of error and end of association conditions to the next layer.

The TCP parse layer of the software is responsible for resequencing of the TCP segments
parsing the data contained within them. Parsed data is delivered onto the next software lay
through callback functions registered with the SNP facility. State information is also passed
same manner. Data may only passed onto the next software layer once it has been acknow
as received by the receiving node (ACK is sent back over the network). In TCP, a windowin
algorithm is used to transmit data and each byte of data in the transaction is numbered wit
sequence number. These numbers are then used in the acknowledgments to indicate how
the data being transmitted was successfully received. The same numbering scheme is also
for sequencing of segments and in the case of retransmissions, to indicate which data nee
replaced. Data received is stored using the LST linked list facility awaiting acknowledgmen
from the receiver. The retransmission scheme allows the SNP facility to forgo checking for c
sums; data delivered with an improper checksum will not beacknowledged by the receiver c
a retransmission of the data which replaces the older corrupt version.

Thesnp_to_files anddcm_snoop applications were created to use the SNP facility in their rea
time operations. The operation of thesnp_to_files application is described above in section 2.3.
It is used to dump the TCP parsed data of the associations or sockets monitored to files. T
dcm_snoop application, whose operations are described above in section 2.3.2, is used for
reporting of activity at the DUL protocol level by parsing the TCP data for DICOM PDUs. Th
DUL parsing operation is performed by an extension of the DUL facility called DULsnoop. T
5

-time

se
 facil-

he
ion is
, it is

 in
d to the
ased

-
 data
keep

eriza-
ork
ta
 able
ode of
all the
 case
work
network

o place
toring
TCP data is either supplied to it in files generated by the snp_to_files application or in real
from the network using callback functions registered to the SNP facility.

The DULsnoop software layer, as a first step, parses the TCP data into DICOM PDUs. The
DICOM PDUs are passed on to the next software layer through callback registered with this
ity. The DICOM PDUs allow this DUL facility extension to track the DUL protocol states of t
associations as well as the association request and response parameters. All this informat
provided to the next software layer. As the data for the DICOM PDUs is being accumulated
stored in ring buffers.

Finally, thedcm_snoop application is used to report the activity at the DUL level as described
section 2.3.2. Command and data element fragments are pieced together and then dumpe
stdout using the DCM facility. Association parameters and DUL protocol state information b
on arrival of the DICOM PDUs are also dumped to the stdout.

2.5 Parameterization

The snp_to_files and dcm_snoop applications and underlying facilities are CPU and I/O inten
sive to the point that they may not be able to keep up with high data rate transfers of large
elements (image data) in real-time. The order of the applications in terms of their ability to
up with rapid data transfers is as follows (that with greatest ability first):

1. snp_to_files
- Partition for output files is local to machine
- Partition for output files is remote (NFS mounted)

2. dcm_snoop
- With stdout > to a file on a local partition
- With stdout > to a file on a remote partition (NFS mounted)
- With stdout to terminal

The applications have only been tested with the Ethernet interface, /dev/le. Some paramet
tion tests were run with the snooping applications on a Sun SPARCstation 10-40 and netw
activity measured using an HP Network Protocol Analyzer (4972A). It was found that on da
transfers with peaks of 50 % network utilization (~5.0 Mbps), none of the applications were
to keep up. This was the case for large image file transfers using the faster non-verbose m
the receiving application. When the verbose mode of the receiving applications was used,
real-time snooping applications were found to keep up. The peak network utilization in this
was found to be 18 % (~1.8 Mbps). Note that in these cases, the residual traffic on the net
seemed to be independent of the results. The measurements for the residual traffic on the
when the above measurements were made was 3-5 % (~ 0.3 - 0.5 Mbps).

The above results indicate that, in the case of large data element transfers, it is advisable t
the sending or receiving applications into a “verbose” mode in order to ensure proper moni
of the communications.
6

ocia-
ptors
nd to

m a
lect the

f the
 Motif

eral the-
r is

n con-
croll list
es in
 an
n.
fer syn-
ext
emoves
ameters
ly

 item in
r selects
ssocia-
d until
f the
3 Association Tool

3.1 Purpose

association_tool is an application with a Motif GUI that is used to construct and transmit ass
tion requests. The goal of this application is to provide a tool for developers of DICOM acce
(not restricted to SCUs or SCPs) to allow them to construct arbitrary association requests a
test their responses. The application provides one screen that allows the user to select fro
fixed set of DICOM SOP classes. For each class that is selected, the user is allowed to se
SCU/SCP role that is being proposed and one or more transfer syntaxes.

3.2 Usage

association_tool takes no switches, requires no environment variables (with the exception o
X11 variable DISPLAY) and does not connect to any database. It uses standard X11R5 and
function calls and does not require any special X11 environment.

3.3 User Interface

Figure 3 is representative of the user interface that is provided byassociation_tool. The num-
bered boxes label parts of the user interface and are described in this paragraph. The gen
ory is that the user selects SOP classes from the list of available SOP classes (1). The use
allowed to select an SOP class multiple times and propose the same or different applicatio
text parameters for that SOP class. Each time an SOP class is selected, it appears in the s
in the upper, right-hand corner of the user interface (2). The user can select one of the valu
that scrolled list to actually modify presentation context parameters. When the user selects
SOP class from (2), association_tool lists that class in the text line labeled (3) for verificatio
The user can select one SCU/SCP role from the selection box in (4) and one or more trans
taxes in the section labeled (5). The Update button (6) is used to actually change the cont
parameters for an SOP class (make the program retain the change). The Delete button (7) r
an SOP class from the list of selected classes (2). Section (8) is used to specify a set of par
for initiating an association. The Request (9) and Release (10) buttons are used to explicit
request and release associations.

When a user requests an association, association_tool creates one presentation context
the association request message for each SOP class selected. As noted above, if the use
an SOP class twice, association_tool will create distinct presentation context items. The a
tion is requested and user notified of the result of the request. The association is maintaine
the user explicitly releases the association or until the user requests another association. I
user requests additional associations, association_tool releases any existing associations.
7

1

2

109

8

76

54

3

FIGURE 3. Representative User Interface for association_tool
8

 ...)

d SC
 the

 the
 sim-
men-
 types.
uld be

he
 Motif

a C-
ndard
ed to

ample
tities,
4 Object Viewer

4.1 Purpose

Part 3 of the DICOM 3.0 standard defines a number of different information objects. These
include normalized as well as composite objects. The definition of image objects (MR, CT,
uses a hierarchy that includes information entities, modules and the individual attributes.
object_viewer is a Motif-based application that provides a simple browser for several image
objects. These include CR, CT, MR, (the soon to be jettisoned) NM, US, multi-frame US an
objects. The user interface description below will indicate how the objects are presented to
user.

4.2 Limitations

There are several natural extensions to this viewer. In this implementation, it does not allow
user to modify any of the attributes. It would also be useful if the program were driven by a
ple table that allowed a user to add information objects with recompiling. The current imple
tation is based on a subroutine library that needs to be augmented for any additional image
A general viewer that did not depend on the image type but could just present attributes wo
another natural extension. That is not provided.

4.3 Usage

object_viewer takes no switches, requires no environment variables (with the exception of t
X11 variable DISPLAY) and does not connect to any database. It uses standard X11R5 and
function calls and does not require any special X11 environment.

object_viewer is based on the DCM facility which stores files using the implicit little-endian
transfer syntax. These files are snapshots of the data as they come across the network in
STORE request. They do not correspond to part 10 of the DICOM standard. This is the sta
file format supported by all of the other tools in this DICOM package (and should be expand
include Part 10 files).

4.4 User Interface

Figure 4 is representative of the user interface presented by object_viewer and presents ex
data for an MR image. The three boxes at the top represent scrolled lists for Information En
Modules and Attributes. In this example, the user has selected the Information EntityImage, the
ModuleImage Pixel and the AttributePhotometric Interpretation. The boxes below indicate the
actual attribute that was selected and the value of the attribute.
9

FIGURE 4. Representative User Interface for object_viewer
10

	CTN Test Tools
	1 Introduction
	2 DICOM Network Snooper
	2.1 Purpose
	2.2 Scope
	2.3 Usage
	2.3.1 snp_to_files
	2.3.2 dcm_snoop
	1. Notification of the arrival of a DICOM PDU, inc...
	2. Association request parameters.
	3. Association response (reject or accept) paramet...
	4. Dumps of command and data elements once all the...
	5. On arrival of each DICOM PDU, the anticipated a...
	6. The end of an association.

	2.4 Overview of Software Architecture
	2.5 Parameterization
	1. snp_to_files - Partition for output files is lo...
	2. dcm_snoop - With stdout > to a file on a local ...

	3 Association Tool
	3.1 Purpose
	3.2 Usage
	3.3 User Interface

	4 Object Viewer
	4.1 Purpose
	4.2 Limitations
	4.3 Usage
	4.4 User Interface

